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crystalline precipitates removed by filtration. The first 
two crops consisted almost exclusively of the acid sodium 
salt of dimethylmaleic acid, and the third contained the 
remainder of this salt and some dimethylmaleic anhydride. 
These three fractions, combined and suspended in water, 
liberated dimethylmaleic anhydride upon addition of hy­
drochloric acid; yield 37%. The remaining three frac­
tions from the original mixture consisted chiefly of di-
methylfumaric acid; the first of these contained a small 
amount of dimethylmaleic anhydride which was removed 
by steam distillation. The yield of dimethylfumaric acid 
was 37%. 

It has recently been stressed, that in order to 
obtain a good curve for the interatomic potential 
energy of a pair of atoms of a substance such as 
argon, it is necessary to take the properties of the 
solid into account. Buckingham1 attempted to 
find a potential energy curve which would con­
form to a theoretical expression for large distances 
(obtained from refinement of London's theory of 
van der Waals forces), and would simultaneously 
correlate the heat of sublimation and lattice dis­
tance of the solid at O0K. with the second virial 
coefficient for the gas. On the other hand, Herz-
feld and Goeppert Mayer2 and Kane3 made cal­
culations of the equation of state of the solid on 
the basis of preassumed potential curves. The 
potential curves used by them, however, were ap­
parently not very satisfactory, since the calculated 
properties of the solid differed from the experi­
mental in several important respects. A recently 
published calculation of a similar nature by Devon­
shire4 did not take quantum effects into account. 

As it appeared important, in connection with 
my recent studies on the fusion phenomena of 
argon, to have as accurate a potential energy 
curve as possible, it seemed that it would be worth 
while to construct a curve which would reproduce 
as well as possible the known properties of the 

* Presented at the Fifth Annual Symposium of the Division of 
Physical and Inorganic Chemistry of the American Chemical Society, 
Columbia University, New York, December 30, 1940 to January 
1, 1941. 

(1) R. A. Buckingham, Proc. Roy. Soc. (London), A168, 264 
(1938). See also J. Corner, Trans. Faraday Soc, 38, 711 (1939). 

(2) K. F. Herzfeld and M. Goeppert Mayer, Phys. Rev., 46, 
995 (1934). 

(3) G. Kane, / . Chem. Phys., 7, 603 (1939). 
(4) A. F. Devonshire Proc. Roy. Soc. (London), A174, 102 (1940). 

Repeated ether extraction of the filtrate from the above 
precipitations removed the methylitaconic acid which 
was obtained in a yield of 12%. 

Summary 
Sodium acid dimethylmaleate has been made by 

partial acidification of the disodium salt. 
The precipitation of the monosodium salt has 

been used in the separation of products in the 
preparation of dimethylfumaric acid. 
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solid from O0K. to the melting point. At the 
same time it was desired that the curve pass into 
the theoretical expression of Buckingham for large 
distances, and also reproduce the second virial co­
efficient of the gas. This paper will present an 
attempt to construct such a curve, together with 
a discussion of the difficulties and uncertainties 
necessarily involved. 

§1. Properties of the Solid in Terms of the 
Potential Energy Curve 

We follow Buckingham in that we consider 
segments of the potential energy curve, assigning 
separate analytical expressions to the separate 
segments. We start by assuming Buckingham's 
form for the potential energy curve U at large in­
teratomic distances, r, namely 

U = - e , r - « - c,r~* (1) 

with C8 = 60 X 10-60 erg cm.6 and C8 = 180 X 
10 ~76 erg cm.8 for argon. These are slightly less 
than values, calculated by Buckingham,6 which 
were stated to represent an upper limit. Re­
duced to more convenient units, we have 

C, = 8.64 X 106 cal. mole- 1 A.6 

C8 = 2.59 X 10« cal. mole"1 A.8 (2) 

We assume that this potential can be used for all 
pairs of atoms which are not nearest neighbors. 

For a short distance on either side of the mini­
mum of the potential curve, we express U in the 
approximate form 
U= U0 + b2(r - r0y - b,(r - r„)2 + bt(r - /•„)' (3) 

where Uo and ro are the respective values of U and 
(5) R. A. Buckingham, ibid., A160, 94 (1937). 
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r at the minimum, and J2, b» and 64 are constants. 
Although this form of potential has been much 
used in the discussion of band spectra, it has not 
recently, as far as I am aware, been applied to the 
problem at hand. It is very convenient because 
of its flexibility, and because of the fairly simple 
relation of the constants to the properties of the 
solid. The properties of the solid will be used to 
evaluate these constants. This done, we shall 
extend the curve smoothly through the interme­
diate region of r which lies between those regions 
for which Eqs. (1) and (3) hold. For evaluating 
the curve at very small values of r, the second 
virial coefficient will be used. 

In considering the correlation of the constants, 
S2, &3 and bi, with the properties of the solid, we 
shall first assume that the solid expands without 
introduction of any disorder5*; that is, we shall 
assume that, without exception, the positions of 
equilibrium about which the atoms vibrate remain 
in the relative positions proper to a face-centered 
cubic lattice, such as is characteristic of argon at 
the lowest temperatures. Later we shall consider 
the possibility that the beginning of disorder in the 
crystal—a phenomenon which could be described 
as premelting—plays a significant role, and shall 
see, roughly at least, how the potential energy 
curve must be altered in order to allow for it. 

OO © 

OO 
Fig. 1.—Surroundings of an atom. Figure at right indi­

cates calculation for atom B. 
We turn now to a consideration of the vibration 

of the atoms in the lattice. The usual procedure 
for exact calculations is to relate the force between 
atoms to the elastic constants of the crystal, and 
then relate the elastic constants to the Debye 
characteristic temperature.6 I believe, however, 
that it is somewhat simpler to proceed in another 
way, which has also been applied in a rough calcu­
lation by Lennard-Jones and Devonshire (cited 
by Corner1) but which can be made exact. 

(5a) For a discussion of disorder see 0 . K. Rice, / . Chem. Pkys., 7, 
883 (1939). 

(8) See, i. g., Herzfeld and Goeppert Mayer* or V. Deitz, J. 
Franklin Inst., 219, 459 (1935). 

Consider first the motion of a single atom in the 
field produced by its neighbors, assuming that all 
the neighbors remain fixed in their positions of 
equilibrium for the particular state of expansion 
of the lattice. We shall designate as x, y and z 
the coordinates of the displacement of the particu­
lar atom under consideration from its position of 
equilibrium. The potential energy of the single 
atom above its potential energy at its equilibrium 
position will, of course, be, in first approximation 
for small displacements, a quadratic function of 
x, y, z, and, in fact, on account of the cubic sym­
metry of the lattice, it will depend only on the 
combination x2 + y2 + z2. This being the case, 
we may just as well consider displacements in the 
^-direction for which y = z = O. Let the re­
direction be defined as indicated in Fig. 1, which 
shows the atom under consideration surrounded 
by six others in a plane. We shall at first con­
sider only nearest neighbors, so it will be neces­
sary, in addition to those shown in the figure, to 
note that the central atom has three near neigh­
bors in the plane above that shown and three in 
the plane below. A displacement of the central 
atom by a small amount x will produce an in­
crease $ in potential energy, which is to be ob­
tained by calculating 

(dU/dr)dr + i(d*U/dr*)dr* (4) 

for each of the neighbor atoms, and adding to­
gether all the results, retaining only terms in x2. 
The value of dr for any particular neighbor atom 
comes directly from the displacement * of the 
displaced atom. Turning to Fig. 1, we see that 
for atom A we have dr = — x, and for atom D we 
have dr = x. For the other atoms the situation 
is more complicated but dr can be obtained by use 
of the law of cosines for an oblique triangle. For 
atoms B and F we find dr = — §# + jx2/a, 
where a is the equilibrium distance for nearest 
neighbors; for atoms E and C we have dr = 
\x + jx2/a. Of the other six neighbors, not 
shown in Fig. 1, two have expressions like B and 
F, two like E and C, and for the other two, dr = 
%x2/a. This gives as a first approximation 

<t> = 4{b, - (3J8 - 2&2GT1)(a - r„) 
+ (fibt - 3J8a - 1)(a - n>)2 

+ 4&4«rl(a - r 0 ) ! - 0}x* 
= 4Bx' (5) 

The term /3 is inserted to take care of the more dis­
tant atoms. It may be evaluated by inserting 
Eq. (1) into expression (4) and adding over all 
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atoms which give appreciable contributions. 
Since (3 is relatively very small, it need be evalu­
ated only roughly. B will be used hereafter as 
an abbreviation for the quantity in brackets. 

Equation (5) may be generalized for any dis­
placement of the atom by replacing x2 by x2 + y2 

+ z2, and is then the potential for a three-dimen­
sional oscillator with frequency v given by 

v* = 2T-^m-1B (6) 

where m is the mass of the atom. 
Actually, of course, the energies of the various 

atoms are not independent, and the total poten­
tial energy will contain cross terms involving 
products such as x&i, x\y%, etc., where the sub­
scripts refer to different atoms. The introduction 
of such cross terms into the secular determinant 
of a classical perturbation problem gives the cor­
rect frequencies for the normal modes'of vibration 
of the crystal, but it leaves the sum of the squares 
of the frequencies unaltered.7 Equation (6), 
therefore, gives directly the average value of v2. 
If we assume the Debye distribution of frequencies 
in the crystal (an assumption which will be dis­
cussed in § 4) the average value of v2 is equal to 
\vm

2, where vm = kQ/h is the Debye maximum 
frequency (9 is the Debye characteristic tem­
perature, k the Boltzmann constant, and h 
Planck's constant). We, therefore, have 

e2 = (1Va)^2I-2W-1Ar2S (7) 

6 is related to the zero-point energy Ez by the 
relation 

E1 = (Vs)A 6 (8) 
We can now set up an expression for the total 

energy of the crystal, as follows 
E = 6U0 + 6i2(a - r0)

2 - 6bs(a - r0)
3 + 6h(a - r0)

4 -
1.227C6O-" - 0.40Ic8O-8 + E, + E, (9) 

Here, as before, a is the equilibrium distance be­
tween nearest neighbors; it, of course, depends on 
the degree of expansion of the lattice or the molal 
volume of the crystal. The first four terms on 
the right side of Eq. (9) take care of the potential 
energy contributions of nearest neighbors and 
come from Eq. (3). The factor 6 arises from the 
fact that there are twelve nearest neighbors, 12 
being divided by 2 in order to avoid counting the 
potential of each atom twice. The next two terms 
give the potential due to all other than nearest 

(7) See, e. g., L. Pauling and E. B. Wilson, Jr., "Introduction to 
Quantum Mechanics," McGraw-Hill Book Co., New York, N . Y., 
1935, pp. 282 ff. The actual constancy of the sum of the squares of 
the frequencies is not proved there, but is a matter of simple algebra; 
see H. B. Fine, "College Algebra," Ginn and Co., Boston, Mass., 
1901, p. 432. 

neighbors.8 Et is the thermal energy, that is, it is 
the excess of energy over that which the system 
would have at 00K. if the value of a remained 
the same. EJT is a function of 9/2" only, and 
has been tabulated for a Debye solid.9 

Finally we turn to a consideration of the con­
dition of equilibrium for the solid. This condition 
may be best obtained by use of the equation10 for 
the pressure of any substance for which the ther­
modynamic quantities, EJT, S, etc., are deter­
mined in the usual manner as a function of QfT, 
only 

P = -(£,/9)de/d7 - d£,/d7 - dEp/dV (10) 

Here V is the molecular volume and EP is the po­
tential energy (first six terms on the right side 
of Eq. (9)). Atmospheric pressure is practically 
zero compared to the terms on the right in Eq. 
(10), so if P is set equal to zero Eq. (10) gives the 
condition for normal equilibrium (i. e., it deter­
mines the value of V or a assumed by the crystal 
at any temperature). If we use a as the indepen­
dent variable rather than V, the condition for 
equilibrium becomes 

dEp/da + &E,/da + E1O"1 dQ/da = 0 (11) 

or, by Eq. (8) 

dEp/do + 6~l (d9/do)(£, + £ 0 = 0 (Ha) 

This equation may be written out in detail with 
the aid of Eqs. (7) and (9). To show how the 
above equations are applied it will be best to write 
them out in approximate forms. As a rough ap­
proximation we may set B = b2 and write Eq. (7) 

e2 = (1Vs)A2T-2W-1J-2J2 (12) 

To this approximation 9 is constant, and since 9 
is known from specific heat measurements, &2 is 
determined. 

In Eq. (9) the terms in (a — r0)
3 and (a — r0)* 

are small for values of a such as occur up to the 
melting point, while the terms for distant atoms 
and Ez have the effect chiefly of shifting the mini­
mum of the potential energy curve without 
greatly changing its shape. If, therefore, we use 
the symbol A to denote the change in any quan­
tity between 0°K. and some given higher tem­
perature, T0, Eq. (9) may be written roughly as 

AE - AEt = 6J2(Ao)2 (13) 
(8) The numerical coefficient is derived from J. E. Jones (Lennard-

Jones) and A. E. Ingham, Proc. Roy. Soc. (London), A107, 636 
(1925). 

(9) See Landolt-B6rnstein, "Physikalisch-Chemische Tabellen," 
1. Erganzungsbd., 1927, pp. 702-707. 

(10) This equation has appeared frequently in the literature, but 
a brief derivation is given in Appendix I. 
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The change in internal potential energy plus 
zero-point energy is given in terms of Aa, 
regardless of the cause of the expansion, by 
Eq. (13). This rough relation depends only on 
the gross features of the interatomic potential. 
The actual value of Aa, attained at different tem­
peratures under conditions of equilibrium for zero 
pressure, will depend on the fine details of the po­
tential curve, i. e., chiefly on 63, as shown below 
(see Eq. (14)). If fa (and fa) were equal to zero 
there would be no expansion, the solid would fol­
low, at least approximately, the Debye theory in 
its simplest form (i. e., with constant 0), and 
AE would be equal to AE1. That this is not the 
case is indicated by the specific heat (CP) values 
for argon, which run considerably higher than the 
Dulong-Petit value at the higher temperatures 
(nearly 8 cal. per mole per degree at the melting 
point). These specific heat data furnish a value 
for AE. AE1 may be calculated roughly at I'd from 
the value of 0 used in Eq. (12), using the tabu­
lated Debye functions. As fa is known from Eq. 
(12), Eq. (13) may then be used to get an approxi­
mate value of the actual expansion, Aa, of the 
lattice, provided the theory of this section (which 
says that the potential energy of the solid depends 
solely on the expansion of the lattice, without any 
effect of disorder) is correct. 

In getting an approximation for Eq. (11) we 
note that Ep + E1 = E - E„ so that, by Eq. (13), 
the first two terms of Eq. (11) become 12S2Aa. 
E1 is the same as AE, of Eq. (13). O^dQ/da is 
equal to §.B_1d.B/da, which is roughly (consider­
ing only the leading terms in evaluating both B 
and d£/da) equal to - ! ( V W - Therefore, Eq. 
(11) takes the approximate form 

12J2Ao - (Vi)(ii/Wa£i = O (14) 
It will be noted that, with fa and Aa found from 
Eqs. (12) and (13), Eq. (14) determines fa. As 
stated above fa is intimately connected with the 
expansion of the lattice. The values of fa and fa 
obtained from Eqs. (12), (13) and (14) can be 
used as first approximations, which will then allow 
rough evaluation of the smaller terms in Eqs. (7), 
(9) and (11) or (Ha) at the two different tem­
peratures. 

These approximate values of the small terms 
may then be used in the usual manner to get 
a second approximation for fa, fa and Aa, and 
the process may be repeated as often as de­
sired. At first we may set fa = O; it requires 
data at a third temperature to get fa. If fa is 

set equal to zero, and fa and 63 are evaluated by 
using the data at O0K. and at a temperature 10 
or 20° below the melting point, it is found that 
the properties of the solid near the melting point 
are not reproduced at all. The theory makes the 
solid appear to expand excessively in the last few 
degrees below the melting point, and the calcu­
lated energy increases far too rapidly. Accord­
ing to the theory, the solid is evidently approach­
ing a breakdown point, such as actually occurred 
below the experimental melting point in the calcu­
lations of Herzfeld and Goeppert Mayer2 and of 
Kane.3 This peculiar behavior is entirely elimi­
nated by assigning the proper value of fa. I t thus 
appears that the properties of a substance may, 
under certain circumstances, become very sensi­
tive to small changes in the potential energy curve. 

In obtaining the second and higher approxima­
tions, it is necessary to know the actual value of a. 
This may be obtained with sufficient accuracy 
from the literature. 

Once the other terms in Eq. (9) are known, Ut 
may be determined if the absolute value of E, as 
well as its change with temperature, is known. E 
represents the difference between the energy of 
the solid at any given temperature and the energy 
of the infinitely dilute gas at O0K. E may be cal­
culated from available thermal data11 (see Appen­
dix II). 

TABLE I" 

RESULTS OF CALCULATIONS FOR ARGON NEGLECTING DIS­

ORDER 

h = 769.1, b, = 968, bt = 294, r<, - 3.8267, U0 = -276.7 
T, 0K. 6 AE (calcd.) AB (exptl.) a (calcd.) 

16.0 82.00 3.794 
51.1 78.24 158.0 157.3 3.824 
69.6 74.60 275.6 276.4 3.852 
82.2 70.63 371.5 370.2 3.882 

" In this table AE is equal to the energy at the tempera­
ture noted minus the energy at 16.O0K. Units of length, 
A.; units of energy, cal. per mole. 

We give the results of our calculations in Table 
I. It will be noted that the values of fa, fa, fa and 
ro used reproduce the changes of energy with tem­
perature almost within the limits of error over the 
whole range of temperatures. 0 at 16.0° has 
been made to agree with the value obtained by 
Clusiuslla from specific heat data. The values of 

(11) Taken from (a) K. Clusius, Z. fhysik. CHm.. B31, 459 (1936); 
(b) A. Frank and K. Clusius, ibid., B42, 395 (1939); and (c) K. 
Clusius and K. Weigand, ibid., BiS, 1 (.940). Values of physical 
constants taken from "Outline of Atomic Physics," 2d ed., by the 
University of Pittsburgh Physics Staff, John Wiley and Sons, Inc., 
New York, N. Y., 1937, Appendix II. 
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a will be discussed below, but it may be stated that 
they are approximately correct. 

§2. Effect of Disorder in the Solid 

All the above calculations were based upon the 
assumption that the effect of any disorder phe­
nomenon in the solid is negligible. There are, 
however, data on another property of the solid 
which, if correct, indicate, when taken in conjunc­
tion with the above results, that disorder in the 
solid may play an important part in determining 
its properties. 

Simon and Kippert12 have measured (bP/i>T)v 

for argon at 730K. From this (dE/dV)T and 
hence (d£ /da ) r can be calculated readily. The 
latter turns out to be about 1270 cal. per mole per 
A., while calculations based on Table I give 
about 750. The experimental value of (bE/da)T 

is thus nearly twice the theoretical. This sug­
gests that actually a considerable amount of dis­
order is appearing in the solid even at 730K., 
which is about 10° below the melting point. The 
actual value of (5£ /do) r is greater than the theo­
retical because at constant temperature the 
amount of disorder increases as the lattice dis­
tance increases. 

Thus it appears that Simon and Kippert's data 
are not consistent with the assumption of §1 con­
cerning the difference between AE and AEt. 
We have overlooked a factor which makes expan­
sion of the lattice almost twice as effective, as 
measured by (dE/£a)T, as it is calculated to be 
in §1. This suggests that we ought to use a 
smaller value of h than was used in §1, since ob­
viously less expansion is required to take care of 
the difference between AE and AE,. Also we 
must remember that the effect of disorder will it­
self be to make the expansion greater than calcu­
lated by the theory of §1. However, the best 
that can be done at present is to continue to use 
this theory, fixing the constants so as to give a 
fairly small expansion, thus making a rough allow­
ance for the further expansion to be expected from 
disorder. Calculations made on this basis are 
shown in Table II. In this case the expansion is 
small enough so that we do not seem to be ap­
proaching a breakdown point, and for this reason 
it is satisfactory to set bt = 0. The difference be­
tween A£(obsd.) and A£(calcd.) may be consid­
ered to be a rough measure of the energy due to 
disorder. 

(12) F . Simon and F. Kippert, Z. physik. Chem., 1S», 113 (1928). 

TABLE II" 

RESULTS OF CALCULATIONS FOR ARGON CONSIDERING DIS­

ORDER 

h = 781.5, b, = 703, bt = 0, r0 = 3.8608, U0 = -279.9 
T, 0K. 6 ZE (cakd.) AB (obsd.) o(ca!cd.) 

11.0 82.00 3.820 
54.4 80.31 178.6 185.7 3.841 
81.2 78.49 336.0 370.5 3.863 
0 In this table A£ is equal to the energy at the tempera­

ture noted minus the energy at 11.0°K. Units of length, 
A.; units of energy, cal. per mole. 

We may now make a brief statement about the 
lattice constants. The tables have been made to 
conform as closely as possible with available data. 
X-Ray measurements at 2O0K.13 and 4O0K.14 give 
about 3.82 ± 0.04 A. and 3.83 =*» 0.015 A., respec­
tively, while at the melting point the density of 
the liquid and the change of volume on melting 
give110 about 3.86 A. In view of the possibility 
of error in the individual measurements, and the 
fact that they are not strictly comparable, having 
been done by different investigators and by differ­
ent methods, it seems probable that no conclusion 
as to the actual expansion of the solid up to its 
melting point is justified. Table II looks much 
better in this respect than Table I, but the differ­
ence is not conclusive. Further experimental 
data on this point are very much to be desired. 

§3. The Potential Energy Curves 

The question now arises as to how to construct 
the complete potential curve from Eqs. (1) and 
(2) combined with Eq. (3) as evaluated from either 
Table I or Table II. We wish to know first how 
far from r0 we should use Eq. (3). In order for 
Eq. (7) to have much significance15 it would seem 
that Eq. (3) should hold at least somewhat be­
yond distances corresponding to the actual dis­
placement of an atom with average energy. I t 
is seen from Eq. (5) and from Table I or Table II 
that an atom vibrating with an energy of about kT 
near the melting point will have a maximum dis­
placement of about 0.25 A. The curve should, 
therefore, follow Eq. (3) to a distance r — r0 equal 
to 0.4 or 0.5 A. 

We have made the assumption that Eq. (1) 
(13) J. de Smedt and W. H. Keesom, Comm. Phys. Lab. Leiden, 

178, 19-21 (1926). 
(14) F. Simon and C. v. Simson, Z. Physik, 25, 160 (1924). 
(15) It should be noted that Eq. (7) depends on the assumption 

that the motion of an individual atom is harmonic, *'. e., all higher 
terms in Eq. (5) must be truly negligible. There will be no term in 
the third degree in x, y, and z, on account of the symmetry, and the 
term in the fourth degree will actually be not more than a few per 
cent, of the term in the second degree for displacements of the mag­
nitude which we shall need to consider. 



8 O. K. RICE Vol. 63 

holds for all but nearest neighbors. To be con­
sistent our potential energy curve should coincide 
with Eq. (1) for all distances beyond that of the 
next nearest neighbors, or approximately 5.4 A. 

The curves actually constructed are shown, 
plotted against r3, in Fig. 2. They are compared 
with the curve given by Buckingham,1 and with 
Lennard-Jones's curve16 of the form —/w~6 + 
Xr~' with s = 12. The latter coincides fairly 
closely with the curve recommended by Corner1 

and is the type of curve used by Devonshire4 in his 
calculations. 

200 

300 

Pig. 2.—Interatomic potential curves for argon: U 
in cal. per mole, r in A.; O from Eq. (3) and Table I; 
® from Eq. (3) and Table II (the curves from Table I 
and Table II are assumed to coincide beyond r3 = 80); 
• from Eqs. (1) and (2); L-J from Lennard-Jones; B 
from Buckingham. Straight line, see §5. 

I t is seen that both of the curves obtained in 
the present paper rise more steeply to the right of 
the minimum than either of the other curves. I 
am inclined to believe that the curve derived from 
Table II, which rises the most steeply of them all, 
is to be preferred, and I feel that the true curve 
cannot vary from it very much, especially in the 
important region between rz — 60 and rz = 75. 
I t may seem a little flat beyond rz = 80, though it 
joins fairly well with the curve from Eq. (1) at 
large distances. I t was given this shape to make 
it conform reasonably well with the second virial 
coefficient of the gas (see §5). Of course, some 
change in this region is not out of the question. 

§4. Discussion of Errors and Deviations from 
the Debye Theory 

It will be well to discuss the possibility of error 
in the potential energy curve caused by any error 
in 0. This is the least certain quantity both 

(16) See R. H. Fowler, "Statistical Mechanics," 2d ed., The 
Macmillan Company, New York, N. Y., 1936, Chapter X. 

from the experimental and theoretical point of 
view, and is also the one most likely to affect the 
potential energy curve. 

Clusiuslla has calculated the value of 9 corre­
sponding to his measured specific heat (corrected 
to give Cv) over a range of temperatures from 
10.5° to 17.60K., Cv varying from 0.95 to 2.34 
calories per mole per degree. The value of G 
shows a trend, increasing from 79.3° at the lowest 
temperature to 83.7° at the highest. If anything, 
one would expect a decrease due to expansion of 
the lattice, but the expansion over this tempera­
ture range is negligible, so that actually constancy 
should be expected, as is, indeed, observed in the 
case of krypton. 

There is, therefore, an uncertainty in 9 of per­
haps 3%. By Eq. (12) this will produce approxi­
mately a 6% error in fa. But by Eq. (14) we see 
that, roughly, fa is proportional to fa2 and to Aa. 
If Eq. (13) is to be maintained, as in the calcula­
tions for Table I, Aa is proportional to fa~*, 
which would make fa proportional to fa^'. In 
any event, fa will increase somewhat more than 
fa, and the result is that the changes in U for the 
important region to the right of the minimum par­
tially cancel. A 3 % error in 9 is not likely to 
produce more than a 2- or 3-calorie error in the 
curve atr — r<j = 0.4 A. 

There is another possible difficulty, which has 
to do with the fundamental definition of 9. 
The Debye theory of the solid state assumes a 
definite and rather arbitrary distribution of fre­
quencies, and it has recently been suggested that 
considerable deviations from the Debye assump­
tion are to be expected. It, therefore, seems de­
sirable to compare the physical properties of a 
solid which would follow from some radically 
different assumptions as to the distribution of 
frequencies. We shall consider the Einstein 
theory, in which all the frequencies have the same 
value, and the approximation, suggested by the 
recent work of Fine17 that two-thirds of the fre­
quencies have a definite value, and the other third 
has a frequency 1.5 times as great. The latter we 
shall designate as the simplified Fine theory. 

It is seen from Eq. (6) and the discussion follow­
ing it, that it is the root-mean-square frequency, 
v, which is of direct physical significance. In the 
Debye theory we have 

9 = (5/3) 1M?/* (15) 

In the Einstein theory the characteristic tempera-
(17) P. C. Fine, Phys. Rev., 56, 355 (1939). 
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ture is ordinarily denned differently (as hv/k); 
however, it is practically necessary for our present 
purposes to have characteristic temperatures 
which are directly comparable, and we shall use 
Eq. (15) to define our 0 for all the theories. 

In Eqs. (9) and (Ha) the important quantity 
E1 + Et depends on 6. A comparison of Ez + 
Et as calculated for the different theories using the 
same value of 9 is given in Table III. It is seen 
that there is very good agreement between the 
theories, especially between the Debye theory and 
the simplified Fine theory. As is to be expected, 
the agreement is best at high temperatures. 

TABLE III 

VALUES OF (E, + E1)/T 
e/T Debye Einstein Fine 

1 6.252 6.253 6.252 
2 7.097 7.105 7.097 
4 10.021 10.104 10.034 

TABLE IV 

VALUES OF Q/ T 
C, 

1.0 
2.0 
3.0 
4.0 

Debye 

7.39 
5.29 
4.00 
2.95 

Einstein 

6.50 
4.92 
3.84 
2.88 

Fine 

6.97 
5.17 
3.96 
2.94 

However, the actual determination of 0 is ef­
fected by means of the specific heat, C„. In 
Table IV, therefore, we give values of 9 / T corre­
sponding to different values of C„, according to the 
different theories. Here there is a greater dis­
crepancy between the theories. However, the 
Einstein theory is known to be far from correct, 
and in the simplified Fine theory, we neglect the 
continuous character of the frequency distribu­
tion, altogether. Actually, the distribution is 
continuous, even though it shows distinct maxima 
at certain frequencies. It, therefore, is probable 
that the error in 9 caused by using the Debye 
theory is considerably less than the difference be­
tween the Debye theory and the simplified Fine 
theory shown in Table IV. Use of the Debye 
theory, therefore, seems to be justified. 

Incidentally it may be remarked that there ap­
pears to be no possibility of explaining the varia­
tion in 9 found by Clusius on the basis of a differ­
ent frequency distribution, and it seems to me to 
be likely that this variation is due to experimen­
tal error. 

§5. The Virial Coefficient 
If we write the equation of the gas in the form 

PV = hT + Bvp + Cvp*+ ... (16) 

where p is the pressure, V the volume per mole­
cule, k the Boltzmann constant, and Bt, Ct, . . . 
constants, Bp is what we shall call the second 
virial coefficient. I t is given in terms of the in­
teratomic potential, U, by the relation16 

Bp = 2ir J0V2U. - e-U/kT)dr 

= h f " ( l - e-U/kT)dw = | , / (17) 

where w = rl and J is defined by the equation. 
We divide the integral into parts, writing 

/ - /l + /l + Jl + /4 (18) 
where h is the integral taken between limits such 
that Eq. (1) holds (in this case we assume it holds 
for w > 140 A.3), J3 is the part for which Eq. (3) 
holds (as an approximation for the purpose of 
calculating J, we assume it holds if —0.5 A. < 
r — r0 < 0.5 A.), J2 is the part between Ji and J3, 
and J4 is the part for small values of r and w. 

Ji is found by expressing U as a function of w, 
expanding the exponential and integrating the 
series term by term. J2 is found by approximat­
ing U by the straight line shown in Fig. 2; this 
should be sufficiently accurate and makes pos­
sible immediate evaluation of the integral. J3 

is found by using the form of the integral with r 
rather than w as the variable of integration, then 
changing the variable to y = r — r0. The expo­
nential then takes the form 

e-Ui/kTe-b,y*/kTe(.btii>-bty*)/kT 

The first factor is constant, and the last factor 
can be expanded as a series. The exponential 
part of the integrand can be written as a sum of 
terms of the form y"e-

b^^kT
! a n d these can be 

integrated term by term with the aid of tables of 
the incomplete moment integral.18 

J4 requires special consideration. The lower 
limit of J3 is already in the steep part of the po­
tential curve, where the repulsive forces are of 
paramount importance. I t should not introduce 
too much error into the virial to assume that U 
is a linear function of w for these small values of r 
or w, even though it is clear that this cannot be 
by any means an exact expression. If we desig­
nate the value of w corresponding to the lower 
limit of J3 as wx, this means that for w < vi\ 

U = U1 + Ci(W1 - w) (19) 

where Ui is the value of U for w = Wi, and a is 
another constant. We then have 

(18) K. Pearson, "Tables for Statisticians and Biometricians," 
Part I, 3d ed., Biometric Laboratory, University College, London, 
1930, pp. xxiv, 22-23. 
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U Jo (1 - C-VZkT)^w 

S «>i - — e-Ui/kT 
a 

(20) 

since U is very large at w — 0. If the potential 
energy curve went up infinitely steeply from the 
point where w = W1, then a would be infinite and 
we would have simply J4 = v>i. With a finite, we 
see by comparing Eqs. (19) and (20), that J4 is 
equal to that value of w for which U is equal to 
Ui + kTe~u'/kT. This suggests that we use 
the experimental values of I (i. e., the values cal­
culated from the experimentally determined values 
of the second virial coefficient, Bt) for a range of 
temperatures together with the calculated values 
of Ji, Ii and Js, in order to obtain J4 from Eq. (18). 
This being simply the value of w for which U has 
the value noted, we can calculate U as a function 
of w for the small values of w. Since Eq. (19) is 
only an approximation, we would not expect 
these values of U and w all to correspond to ex­
actly the same value of a, but the curve obtained 
should be a fairly good one, and if all the data are 
mutually consistent it should fit on well to the 
part of the curve for U obtained in §3. 

The experimental values of J are obtained from 
the work of Holborn and Otto19 and Cath and 
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Fig. 3.—Values of / ; O from Holborn and Otto; • from 

Cath and Onnes. 
(19) L. Holborn and ; . Otto, Z. Physik, S3, 1 (1925). 

Onnes.20 These are shown plotted in Fig. 3. 
Where the two sets of data do not agree, values 
from the curve have been used. 
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Fig. 4.—Interatomic potential curves for argon: TJ, 
in cal. per mole, r in A.; • from Eq. (3) and Table I; 
O from virial coefficient and Table I; • from Eq. (3) and 
Table II; O from virial coefficient and Table II. Upper 
abscissas for right-hand curve and points; lower abscissas 
for left-hand curve and points. 

In Fig. 4 we give the results of the above indi­
cated calculation, i. e., the values of U as a func­
tion of w. It is seen that in both cases the points 
derived from virial coefficients at the higher tem­
peratures (i. e., the higher points) fit in well with 
the curve for larger values of w, while the points 
derived from the lower temperatures fall sharply 
toward the left. It does not seem likely that any 
change in the potential energy curve could im­
prove the situation with respect to these points 
without worsening it with respect to the points 
which now fit. I am inclined to believe that the 
virial coefficients at the lowest temperatures are 
somewhat in error. Even at the lowest tempera­
ture the error would need to be only 6 or 8% to 
explain the discrepancy, and since the virial co­
efficient is in itself a correction term this does not 
seem unreasonable. I believe, therefore, that we 
may conclude that, within experimental error, 
the equation of state for gaseous argon is consist­
ent with the equation of state for the solid. The 
virial coefficient does not assist us in deciding be­
tween the two sets of assumptions regarding the 
solid. 

(20) P. G. Cath and H. K. Onnes, Arch. Neirland. Sci., 6, 26 
(1923). 
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I wish to thank Professor R. H. Lyddane for 
some very helpful suggestions and discussion. 

Appendix I 

Derivation of Eq. 10.—Since no heat is lost or gained by 
a system in an adiabatic expansion, we may write 

P = -(dE/dV)s = -(&£«/&V)s - dEjdV - dEp/dV 
But as 5 is a function only of Q/T, the latter does not 
change in an adiabatic process. And since EJT depends 
only on Q/T, it is also true that EJQ = [EJT)[T/Q) does 
not change in an adiabatic process. Hence 

/m\ /ae(Ej/e)\ E, de 
Ki)VJs = V *>V Js QdV 

so that Eq. (10) follows immediately. 

Appendix II 

Calculation of Heat of Sublimation of Solid.—This 
calculation proceeds in a straightforward manner from the 
specific heats of solid, liquid, and vapor (assumed a perfect 
gas), the heat of fusion and the heat of vaporization of the 
liquid11; but the latter must be corrected to give the heat of 
vaporization to form a perfect gas. This correction was 
made as follows. We assume all terms in Eq. (16) in p%, 
or higher powers, to be negligible, and then apply the 
thermodynamic equation 

\Sp)r = V ~ T \ZTJP 

Integrating (&H/Z)p)T from 1 atmosphere to zero pressure 
we find 

where V is the volume of one mole of gas at T (the boiling 
point) and 1 atmosphere. We then use the data of Cath 

When columbium fluoride, potassium fluoride, 
and hydrofluoric acid are mixed in varying pro­
portions in aqueous solution, six distinct crystal­
line compounds can be prepared.2 Two of these, 
obtainable when columbium fluoride is added in 
excess, will not be discussed in detail. Empirical 
formulas of the remaining four compounds are 

* Presented at the Fifth Annual Symposium of the Division of 
Physical and Inorganic Chemistry of the American Chemical Society, 
Columbia University, New York, December 30, 1940 to January 1, 
1941. 

(1) For earlier papers in this series see (a), T H I S JOURNAL, 61, 1252 
(1939); (b), ibid., 61, 2849 (1939); (c), ibid., 62, 3126 (1940). 

(2) C. W. Balke and E. F. Smith, ibid., SO, 1637 (1908). 

and Onnes to evaluate Bp and dBr/dT. This gives AH -
17.7 cal. 

For the heat of sublimation of the solid at 16.0°K. to 
give vapor at O0K., we find 1840.6 cal. per mole; if the 
solid is at 11.0° it is 1848.9 cal. per mole. 

§6. Summary 

A detailed investigation has been made of the 
relation between the interatomic potential energy 
curve and the properties of solid argon. The 
characteristic temperature and the total energy of 
the solid have been expressed in a simple way in 
terms of the constants of the potential energy ex­
pression, and the condition for equilibrium has 
been set up and applied in the determination of 
the potential energy curve for argon from the ex­
perimental data. The effect of the setting in of 
disorder (premelting) in the solid has been con­
sidered. What is believed to be a good potential 
energy curve for argon has been found, and com­
pared with some others which have been pre­
viously used. The effect of the distribution of 
the frequencies of the normal modes of vibration 
of the solid upon its physical properties has been 
considered, and the effect of possible deviations 
from the Debye theory estimated. Finally, it 
has been shown that the potential curve obtained 
reproduces, probably within the limits of error, 
the experimental values of the second virial co­
efficient of the gas. 
CHAPEL HILL, N. CAROLINA RECEIVED OCTOBER 8, 1940 

K2CbOF6-H2O, K3CbOF6, K3HCbOF7, and K2-
CbF7. An X-ray study of potassium heptafluoco-
lumbate, K2CbF7, demonstrating that it contains 
the seven-coordination complex, CbF7", has been 
reported.1* The purpose of the present paper is 
twofold: first, to point out the remarkable fact 
that three stereochemically distinct types of com­
plex columbate ions are represented among the 
four compounds for which formulas are given 
above, and, secondly, to report in detail the deter­
mination from X-ray diffraction data of the 
crystal structure of potassium oxyfluocolumbate-
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